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SUMMARY

Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a ther-

modynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental pro-

gram is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a

model silicon carbide/titanium composite system having rectangular, hexagonal, and square diagonal fiber packing

arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from

micromechanics, using both finite element analysis and the generalized method of cells. Residual stresses from pro-

cessing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or

shear loading is represented by a simple interface model. The influence of microstructural architecture is largest

whenever fiber-matrix debonding is not an issue; for example in the presence of transverse compressive stresses.

Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to

the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent

agreement with that predicted using a large number of displacement-based finite elements.

I. INTRODUCTION

The advent of man-made fiber-reinforced composite materials some forty years ago enabled the design of more

efficient structures and greatly expanded the domain of engineered materials. Recent developments in the processing

of unidirectional metal matrix composites (MMCs) provide new opportunities lbr engineers and materials scientists

to tailor microstructural architecture lbr specific applications. For example, placing individual fibers in photo-etched

grooves in foils of matrix material results in a very unitorm microstructure. Since the grooves hold the fiber in place

during consolidation, the microstructure can be engineered by simply specifying the foil thickness and groove pat-

tern. Consequently, this paper addresses the effect that various microstructures have on the overall inelastic material

response in the presence of multiaxial stress states.

This research merges and builds upon two recent publications on unidirectional composites; one dealing with

different microstructural architectures subjected to uniaxial loadings (Arnold et al., 1996a) and the other with

macroscale flow/damage surfaces (Lissenden and Arnold, 1997a) given a fixed architecture. Hence, a brief summary

of each follows, alter which the objectives of the current work are enumerated.

Arnold et al. (1996a) begins with an extensive survey of the literature dealing with the effects of fiber shape and

distribution on the response of composites. The generalized method of cells (Paley and Aboudi, 1992) was summa-

rized and then used to predict the response of a silicon carbide/titanium system (SiC/Ti). The results presented dem-

onstrate the relative effects of fiber arrangement and shape on the axial and transverse stress-strain and creep

responses fi_r both strong and weak fiber/matrix interfacial bonds. Fiber arrangements considered include rectangu-

lar, square, square diagonal, and hexagonal periodic arrays as well as a random arrangement. Circular, square, and
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cross-shapedfibercross-sectionswerestudiedasweretheeffectsoffibzrvolumefractionandstrainrateon the

stress-strain response. Additionally, the stress-strain and creep responses of "hybrid" composites (those with differ-

ent size fibers having different arrangements and bond strengths) were investigated to determine the feasibility of
using this approach to enhance the transverse toughness and creep resisance.

Lissenden and Arnold (1997a) addressed theoretical and experimer_tal issues regarding constitutive model
development for anisotropic heterogeneous materials using micromechanics in lieu of actual experimental data. The

generalized method of cells with four subeells, arranged to represent a square array of fibers was used to predict the
multiaxial response of MMCs in terms of overall flow/damage surfaces (i.e., those incorporating matrix visco-

plasticity and fiber/matrix debonding) in three different stress planes. T!le flow/damage surfaces were shown to have

their centers offset from the origin by residual stresses and their shape altered by debonding. The normality condi-

tion was shown to be reasonably well satisfied for initial surfaces of constant inelastic power (or in this case dissipa-
tion) in the presence of fiber-matrix debonding. Results indicated whicE_ types of flow/damage surfaces should be

characterized and what loading histories applied to obtain the most meaningful experimental data lbr guiding theo-

retical model development and verification. This work differed from the extensive studies of plasticity in MMCs

conducted by Dvorak and coworkers (summarized by Dvorak, 1991), it: that different definitions of rate-dependent

flow and the effects of fiber-matrix debonding were addressed by Lisscnden and Arnold (1997a).

Herein we will demonstrate, using micromechanics, the influence t!Tat the continuously reinforced periodic

microstructures shown in figure 1 (namely rectangular, hexagonal, and _quare diagonal fiber packing arrays) have

on overall flow/damage surfaces in the axial-transverse ((Yll - _22 )' trar;sverse-transverse (_22 - (Y33), axial-shear

(ell - ff12 ), and transverse-shear ((Y22 - _12 ) stress planes. Both a displacement-based finite element analysis (FEA)
and the generalized method of cells (GMC) micromechanics approach _re employed. Since the material response is

in general viscoplastic, we will consider flow surfaces (typically important at elevated temperature), which are geo-

metrically analogous to yield surfaces (typically important at room temperature). Furthermore, silicon carbide/

titanium (SiC/Ti) composites exhibit a weak bond between the constituents and this damage mode, when active, can

greatly affect the overall material response. The effects of damage are included in the definition of flow surfaces,

hence the name flow/damage surfaces. We will pay particular attention to definitions which indicate a prescribed

level of inelasticity or damage, in an attempt to balance theoretical and zxperimental considerations. Sometimes

results for the strong bond case (which is fictitious for current SiC/Ti s) stems) are shown in order to demonstrate

how fiber/matrix debonding influences the predicted overall inelasticity.

MMCs are anticipated to be typically used in elevated temperature environments. Unless stated otherwise, the
results presented are for a TIMETAL-21S titanium matrix reinforced by a 35 percent fiber volume content of con-

tinuous SCS-6 fibers. This unidirectional SiC/Ti system is taken as our model material system (see Arnold and

Castclli. 1995). Two fairly extreme temperatures are considered; 23 anti 650 °C (where time-dependent effects

dominate the titanium matrix). The fiber response is taken to be linear elastic and temperature-independent, while

the matrix response is elastic-viscoplastic (Arnold et al., 1996b and c) and highly temperature-dependent as illus-

trated in figure 2. Note that the protective fiber coatings used to reduce fiber strength degradation (associated with

chemical reactions with the matrix during processing) result in a weak I,ond to the matrix. A discussion of modeling

this weak bond and the viscoplastic matrix response is postponed until :;ection III. Finally, as we are interested in

prescribed stress planes, all Ioadings are stress controlled. An equivalent stress rate, _,surfaces in of

2 MP_sec is used in all cases, where if! is the contracted stress tensor and / = 1,2 ..... 6.
In the next section (II) we review the theoretical framework and basic concepts applicable to inelastic flow in

MMCs. Flow surface definitions and factors that influence flow are discussed and an appendix (A) provides a con-

tinuum example. The FEA and GMC micromechanics models are introduced along with the constituent constitutive

models in Section Ill. The stress-strain response and inelastic power-fine response for different microstructural ar-

chitectures are presented in Section IV. A related appendix (B) discusst s the accuracy of the FEA and GMC models.

Finally, Section V presents the effects of microstructure and fiber-matri × debonding on macroscale flow/damage

surfaces in four different stress planes at 23 and 650 °C. Section VI pro(ides a closure for the paper.

II. INELASTIC FLOW

Our subject is the inelastic multiaxial response of MMCs tbr appli_ ations in elevated temperature environments.

Hence. the viscoplasticity of anisotropic composite materials susceptibl: to internal damage must bc addressed.

From the viewpoint of a structural analyst investigating complex comp4,nents, a macroscale continuum model is
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preferredduetoitsnumericalefficiencyrelativetoalternativemicromechanicsanalyses.However,suchacon-
tinuummodelisnotcurrentlyavailable;noraretheexperimentalresultsthatarenecessarytodevelopsuchamodel.
Thus,inthepresentstudywewillutilizeatheoreticalframeworkappropriateforcontinuummodelingtoguideus
andemploytwomicromechanicsmodelstosimulatetherequiredexperimentsnumerically,soastounderstandthe
theoreticalandexperimentalimplicationsand/orassumptionsnecessaryineitheramacro(continuumor
micromechanicsbasedapproach.

I1.1.TheoreticalFramework

Thetheoreticalconsiderationsusedin thispaperarebasedonanenergybalance.Theprimaryvariablesatany
pointaretheCauchystresstensor,oi)'theinternalstresstensor,%]"andtemperature.T. Other internal state vari-
ables could also be defined and used if we were so motivated. The current values of these variables can be used to

define the Gibbs thermodynamic potential, G = G(6ij, o_ij,Dij, T), where Di] is the preferred direction tensor formed by
the sell" product of the unit vector denoting the fiber direction. Conjugateto these variables are the total strain tensor,

cij, the internal strain tensor, ,_j, and the entropy, S,

0G 8G 9G

eij- _9(rij qij c)_xij S 31" (1)

Our basis is that the total work performed on the system must be equal to the sum of the stored energy and the en-

er_ov dissipated where the stored enerev includes an elastic comoonent as well as an inelastic component associated

with the internal state. Thus, the dtss_patlon potential, £2 = [2((Yij,o_ij,Dij, T), can be dehned to be (YijEij - o_ij'.'.Tlij.
The associated flow law (for the inelastic strain rate) and e_:olution equations (for the internal strain ratc) arc

given by normality,

c lij" _ 8f_ ,A° _ 8f_
8cij ' -

(2)

and

where

and Qij,_t is called the internal compliance operator (Arnold and Saleeb. 1994). Thus, once the functional dependen-
cies of the Gibbs and dissipation potentials have been determined, all of the variables are known by simple

differentiation. Let us now assume that the dissipation potential can be written in terms of two scalar functions,

f'Z = _(F.H), where F depends on the deviatoric effective stress, E_, and H depends only on the internal stress
(Robinson and Ellis, 1986). The deviatoric effective stress is the difference between the deviatoric Cauchy stress and
the deviatoric internal stress. Now the flow law can be written,

(3)

Thus, thc direction of the inelastic strain rate vector is normal to surfaces having F = constant. However, if it is

true that the normality condition is not satisfied in MMCs, as indicated by Nigam et al. (1994a,b) lot boron/alumi-

num, then it becomes necessary to develop a nonassociated flow law and evolution equations. We return to this issue

at the end of Appendix A.
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II.2.SurfaceDefinitions

Theconceptofayieldsurfaceiswellknowninrate-independentpasticity,evenif noonedefinitionofyielding
hasbeenuniversallyadopted.Themostcommondefinitionsemployed-aretheproportionallimit,asmall(usually
5to20ILtm/m)offsetstrain,aback-extrapolation,andalarge(usually2!)00lUre/m)offsetstrain.Forrate-dependent
plasticity(viscoplasticity),theconceptofastrictyieldsurfacebreaksdt_wnasstressstatesoutsidetheyieldsurface
areaccessible(sincenoconsistencyconditionapplies).Thustheneedfi_rgeometricallyanalogous,thermodynami-
callybased,flowsurfacedefinitions.Atleasttwodifferentrate-dependentdefinitionshavebeenproposedformono-
lithicmaterials(ClinardandLacombe,1988);

(I)surfacesofconstantdissipationrate(SCDRs),definedbyOijk_'i- Ot(i._ij
!

and

/2-_./.I
(2) surfaces of constant inelastic strain rate (SCISRs), defined by ._ Eijl3O .

These definitions can also be applied to composite materials. However, one needs to be careful when using

micromechanics as the inelastic strain is an eigenstrain and consequently;

(4)

where an over-bar indicates a macroscale quantity and V is the total voi:Jme of the representative volume element.
The difference is due to the existence of residual stresses, at least some of which are associated with stored elastic

energy. Being an additive quantity, the overall dissipation potential can be taken to be the volume average of the

local dissipation potentials (Suquet, 1987), and from a theoretical standooint that is what we would like to quantify.

However. it is indeterminate experimentally because the local (internal) variables are unknown and not measurable.

This issue is dealt with more completely by Lissenden et al. (1998). Here let us define another type of flow surface
/

using experimentally measurable macroscopic quantities, "_ij'gij, that ale available from both micromechanics and
macroscale models. We will call them surfaces of constant inelastic power (SCIPs). This is in fact the nomenclature
that should have been used by Lissenden and Arnold (1997a) instead of the term initial SCDRs. The actual differ-

ence between SCIPs and SCDRs depends on many factors, but as shown in figure 3 |or transverse tensile loading, it
can be substantial.

Lissenden and Arnold (1997a) demonstrated, using micromechanics, that the direction of the overall inelastic

strain rate vector can differ significantly from the outward normal of a SCISR. Whereas, for the stress planes consid-
ered, the direction of the overall inelastic strain rate vector was reasonably close to the outward normal of the

SCDRs (actually SCIPs) I considered. SCISRs, however, are certainly more amenable to experimental methods than

are SCDRs, and may be more amenable than SCIPs given that stress quantities are not included in the definition. For

macroscale continuum theories it is not possible to distinguish between SCDRs and SCIPs. A macroscale continuum

example is given in Appendix A.

11.3. Factors Influencing Flew

Many factors influence inelastic l]ow in metallic materials. Certain y, temperature and loading rate as well as

the past loading history can bc important in many mctals. Additionally, microstructural architecture, degree of

INole that for a near virgin state. SCDRs and SCIPs are nearly the same given ot(i= 0. bw as incleasticflow occurs to_!j_:0) they will diverge.
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anisotropy,fiber-matrixbondstrength,anddamageinfluenceflowin composites. Other factors, such as the stress

plane, definition, and target value influence how flow is represented. Lissenden and Arnold (1997b) illustrated the

effects of many of these factors. The current paper locuses on the influence of microstructural architecture and fiber-

matrix bond strength. We consider repeating microstructures, specifically ones having rectangular, hexagonal, and

square diagonal tiber packing arrays as shown in figure 1. The rectangular array has an aspect ratio, R = a/b. For the

special case of a square array, R = 1. Additionally, we consider strong and weak fiber-matrix bonding. Our
definition of strong is that there is no discontinuity in the displacement field at the interface. Likewise, weak means

that the interlace can transmit a finite traction before debonding causes the fiber and matrix to separate.

III. MICROMECHANICS

Biaxial experiments on unidirectional continuous-fiber reintbrced SiC/Ti in the axial-transverse (cyll - _22 ),

transverse-transverse (CY22- (Y33), axial-shear (('Ill - (_12)' and transverse-shear (G22 - _12 ) stress planes were simu-

lated numerically using micromechanics. Initial overall (macroscale) flow/damage surfaces were mapped out by a

sequence of stress-controlled proportional loading probes at different angles in a prescribed stress plane as shown in

figure 4. The two nonzero stress rate components were calculated to be the cosine and sine of the equivalent stress
rate (2 MPa/sec). Each probe started at the origin and continued until the inelastic power target value had been

reached, after which the material was returned to its virgin state, the probe angle increased (usually by 5°), and the

next probe conducted: until the entire stress plane (0 --_ 360 °) had been probed. For surface determinations at room

temperature thermal residual stresses were accounted lk_r by cooling the composite from a stress-free temperature of
815 °C in 2 hr. These simulations were conducted using both FEA and GMC, with the specifics described below.

III. I. Finite Element Analysis

The commercial FEA program ABAQUS (HKS,1995) was used to determine the response of the micr_struc-

tures of interest (fig. I ). Each microstructure can be represented by a repeating unit cell that has two planes of sym-

metry. Thus, it is only necessary to analyze a quarter of each unit cell. Coarse and fine discretizations of one quarter
of the repeating unit cell Ibr both square and square diagonal arrays are shown in figure 5. Only strongly bonded

SiC/Ti was considered using FEA for determining SCIPs. Generalized plane strain triangular elements formulated

by Lissenden and Herakovich (1995), and implemented into ABAQUS through a UEL subroutine, were used for
modeling the repeating unit cell. These triangular elements have an extra node that is common to all elements in the

mesh. The degree of freedom in the l-direction (axial) at this common node is what makes this a generalized plane

strain element. Furthermore, warping of the 23-plane permits axial-shear loading to be simulated. Overall inelastic

strain components were calculated as the difference between the total strain components, found by volumetric aver-

aging, and the elastic strain, found from the overall stress (volumetric average) and elastic properties.

The boundary conditions applied to each FEA mesh are illustrated schematically in figure 6. To maintain com-

patibility with the adjacent unit cells, multipoint constraints (MPCs) were applied on the edges that are in contact

with adjacent unit cells. For example, MPCs were applied along the right edge such that the edge remains straight.

Stress control loading was simulated by applying concentrated forces at the nodes along an appropriate edge; except
tbr axial loading, where a concentrated force was applied to the common node, which is shown in figure 6. Details

of the applied Ioadings are summarized in table 1.

II1.2. Generalized Method of Cells

The generalized method of cells (GMC) (Paley and Aboudi. 1992; Aboudi, 1995) is an approximate analytical
micromechanics model that extends the original method of cells (Aboudi, 1991) to an arbitrary number of subcells,

permitting the study of different microstructures. The reader is referred to Aboudi (1995) for the derivation of the

detailed equations of GMC. The primary equations of GMC relate to standard micromechanics equations as follows.
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(9)
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Na Nfl N7
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a=t fl=t r=l

(10)

In equations (5) to (10) an overbar indicates a macroscale variable; (x) _xplicitly indicates that the local variable is a
! /D

tunction of position: <<>>V iv" dVis the volume average operator; Ci_ikldenotes the overall effective elastic stiff-

ness tensor; the superscript (o¢]_¥) refers to subcell (orgy) where (x, 13,and y are indices in the three coordinate direc-

tions: d, h, and l are the overall dimensions of the repeating unit cell and the same variables with subscripts denote

dimensions of subcells; Aijkl, Bijk;, and Dok I are the elastic strain, stress, md nonelastic strain localization tensors;
and G t and c_ are arrays containing the subcell inelastic and thermal stn in vectors.

GMC has been implemented into the recently developed micromechanics analysis code (MAC/GMC) which

has many user friendly features and significant flexibility (Wilt and Arnold, 1996). The GMC unit cell representa-

tions utilized herein for square, hexagonal, and square diagonal arrays are shown in figure 7.

III.3. Constituent Models

As mentioned previously, the fiber response is assumed to be linear elastic and temperature independent

(E = 400 GPa, v = 0.2, CTE = 3.5xl0 -6 °C-I). The elastic-viscoplastic t ehavior of the matrix is represented using a

generalized viscoplastic potential structure (GVIPS) model (Arnold et a., 1996b,c). This model is a fully associa-

tive, multiaxial, nonisothermal, nonlinear kinematic hardening viscoplastic model for use with initially isotropic

metallic materials. A unique aspect of this model is the inclusion of nonfinear hardening through the use of a com-

pliance operator Qijkl in the evolution law for the back stress. This nonlinear tensorial operator is significant in that it
allows both the flow and evolutionary laws to be tully associative and g:eatly influences the multiaxial response

under nonproportional loading paths so prevalent within composite materials. The primary equations are summa-
rized by.
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=_QoklCklpqbpqif
Aij

bij if

: L,j,,,(Ak,-0kA')

aijZ q < 0

aijZij > 0

flow law

evolution law

internal constitutive rate law

(16)

where

2J2

Lijkl = Qij_l : Kl(lijk/+ K2aijakl )

bij = i'[j - K3aij

OijK4aij

[:=\ _c
G--

3aua 0

2_:o

Zij = SO - aij

SO = °0 _ I crkk6ij

aiJ = °tiJ _ 10_kk 6ij

where the Macauley brackets are defined by

0 x<a(x - a) =
x-a x>a.

The constants K t - K4 contain material parameters and internal stress invariants and can be inferred from Arnold
et al. (1996b).

Weak bonding between the fiber and matrix is modeled by assuming that a jump in the displacement field may
occur under certain conditions, while the traction vector remains continuous. In this model debonding initiates when

the normal traction exceeds a critical value or when the tangential traction exceeds a critical value, with no interac-

tion between the two,

tit=RtTt j if Tn>t n or Tt
(17)

where u denotes interfacial displacement, T the interfacial traction, and R the flexibility of the failed interface. The

subscripts n and t denote the directions normal and tangent to the interface respectively. This simple model com-

bines elements of interface models developed by Jones and Whittier (1967) and Achenbach and Zhu (1990). Once

debonding has initiated, the interfacial displacement rate is made proportional to the stress rate, simulating a per-

fectly plastic-like behavior. In the results for SiC/Ti with a weak bond the critical normal and tangential tractions
have been taken to be 103 and 41.4 MPa, respectively, and the flexibility of the failed interface has been taken to be

0.271 mm/MPa.

IV. STRESS-STRAIN RESPONSE

Before determining flow surfaces we validated our FEA models by performing a convergence study and com-

paring stress-strain responses with those published by Brockenbrough et al. (1991) for boron/aluminum. In figure 8,

the stress-strain and inelastic power-time responses are shown for axial (cyl i), transverse (1322), and shear (o12) Ioad-

ings at 650 °C. Here the effect of microstructurc, i.e., square, hexagonal, and square diagonal repeating arrays of
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fibers,isdemonstratedusingGMCandtheunitcellsshowninfigure7.Bothstrongandweakfiber-matrixbondsare
considered,butasexpectedforaxialloadingtheinterfacedoesnotaffecttheresponse.Alsoasexpected,micro-
structurehasnoaffectontheaxialresponse(fig.8(a)).Hexagonalandsquarediagonalarrayresponsesfortrans-
verseandshearloadings(figs.8(b)and(c))forstronglybondedcompositesareverysimilaranddivergefromthe
responseofasquarearrayfortransverseloading,butagreecloselywiththeresponseofasquarearrayforshear
loading.It isclearthatthetransverseresponseisstronglyaffectedbynficrostructuralarchitecture,whiletheaxial
andshearresponsesarenotaffectedandverymildlyaffected,respectively.However,forweaklybondedcomposites
thesquareandhexagonalarraytransverseandshearresponsesaresimilar,whilethesquarediagonalarrayexhibitsa
morecompliantresponse(figs.8(b)and(c)).

AnaccuracycomparisonbetweentheseGMCunitcellrepresentationsandtheirFEAcounter-partswasalso
undertakenandisdescribedinAppendixB.A summaryofourobservationsbasedonstress-strainandinelastic
power-timeresponses,relativetotheappropriatemicromechanicsmodel(FEAandGMC)andmicrostructuralarchi-
tecture(square,hexagonal,andsquarediagonalarrays)isasfollows:

• GMCpredictionsagreewellwithFEApredictionsif afineFEAmeshisemployed;
• A fineFEAmeshisrequiredtoaccuratelypredictgrossinelasticflowinthetransversedirection,butforaxial

andshearloadingsacoarseFEAmeshisadequate,however,ac_arsemeshappearsadequateIk_ranyofthe
Ioadingsconsidered,provided the inelastic power is small:

• Microstruetural architecture is very significant for transverse loading, but has much less effect for axial

(none) and shear loading (only significant for weakly bonded composites). Note that we only considered axial

shear (Oi2) loading, not transverse shear (_23) loading.

V. MACROSCALE FLOW/DAMAGL SURFACES

Our tocus now turns to macroscale flow/damage surfaces in order _oobtain information on the initial overall

Surfaces of constant inelastic power (SCIPs), defined simply by crije _,_will be determined indissipation potential.

order to givc this work relevance to experimental and macroscale continuum approaches. Here the inelastic strain

tensor includes matrix inelasticity as well as nonlinear effects associated with fiber-matrix debonding. First, we

exercise the FEA models tbr a strongly bonded composite, then compa_'e FEA and GMC predicted flow surfaces,

and then finally consider a weakly bonded composite using GMC.

Consider first the effect that the target value has on SCIPs in the a:<ial-transverse stress plane at 23 °C. Figure 9

shows 1.5. and 10 kPa/sec SCIPs for both a square array and a square.liagonal array as predicted by the fine and

coarse FEA meshes shown in figure 5 for strong bonding. The first obs._rvation that we make is that the surfaces for

different target values are not concentric for either array and that they _re offset in the axial compression direction

due to thermal residual stresses. While the surfaces for square and square diagonal arrays are approximately the

same size for the same target value, their shapes are different, particularly the 5 kPa/sec SCIPs in the first quadrant

(i.e.. tension-tension). The 5 kPa/sec SCIP for a square array has a 'nose' at approximately 35°, while the 'nose' on

the same SCIP for a square diagonal array is at approximately 15°. The differences in shapes of the overall flow

surfaces are apparently related to the different local stress and strain fields.

Local J2 (I/2 SijS O, where S O is the deviatorie Cauchy stress) cont;gurs in the matrix are plotted in figure 10 for
both arrays given their fine mesh idealizations and all three target valtes for loading at 35 ° from the axial stress

axis. The smallest values (darkest) occur in the matrix adjacent to the fiber near the bottom edge (and top edge for

the square diagonal array). This is interesting because J., is small where the transverse stress is large and large

where the transverse stress is small. Another way to see the differences in the local fields for square and square

diagonal arrays is to compare the local stress invariants / 1 (the sum of the normal stress components) and J2" In

figure I I, the stress invariants / I and J2 for each matrix element have been sorted and are plotted in descending
order. Notc that while the two arrays each have a fiber volume fraction of 0.35. the square array has 227 matrix

elements in the fine mesh, while the square diagonal array has 281. The square diagonal array has a relatively

small number of elements with large hydrostatic stress, while the square array has a more uniform distribution of

hydrostatic stress (fig. I I(a)). For example, the difference between tht square and square diagonal arrays for

5 kPa/sec SC1Ps is related to the different J_ distributions shown in figure 1 l(b). The square array has fewer ele-

ments with high values of J., and therefore requires a higher overall stress to achieve the same flow target value as

the squarc diagonal array.
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ComparingtheSCIPsfromthefineandcoarsemeshFEAsshowninfigure9indicatesthatthecoarsemeshfor
asquarearrayoffibersprovidesreasonablygoodresultsintheaxial-transversestressplane.However,inthecaseof
asquarediagonalarrayoffibersagreementbetweenthefineandcoarsemeshresultsisnotasgood,implyingthat
toofewelementswereusedin thecoarsesquarediagonalarraymesh.

Clearly,it ishighlypreferabletouseacoarsemeshinlieuofafinemesh,providedtheaccuracyoftheresults
canbemaintained,astheexecutiontimeisgreatlyreduced.

Nimmeretal.(1991)usedFEAtostudytheeffectthattheaspectratioofarectangulararrayhasonthetrans-
versetensileresponseofaweaklybondedSCS-6/Ti-6-4compositesystem.HereweexpandthespiritofNimmer's
studytothebiaxialloadingbehaviorofastronglybondedSCS-6/TIMETAL21Scompositesystem.A widerange
ofaspectratios(R=a/b in fig. I ), 0.5 < R < 2.0, are considered and compared with results for a square array

(R = 1.0). Figure 12 shows 5 kPa/scc SCIPs at 23 °C in four stress planes for aspect ratios of 0.5, 1.0, and 2.0. As

demonstrated previously, the microstructural architecture, defined by the aspect ratio here, has the largest effect by

far on the transverse response.
One application for the kind of information that flow surfaces provide is the design of components subjected to

loads resulting in deterministic multiaxial stress states. The microstructure can then be engineered to best resist the

loading. For example, a ring mounted on a shaft in a jet engine will rotate in service. Thus, the radial and circumfer-

ential stress components will be tensile. Suppose the ring is to be fabricated from hoop-wound, strongly bonded SiC/

Ti, and that the goal is to delay the onset of inelastic llow as long as possible. According to the first quadrant of the

axial-transverse stress plane in figure 12, the largest possible aspect ratio should be used. However, lot a weakly

bonded composite, once the interface fails the stress distribution is much different because the transverse stress in

the fiber gets redistributed to the matrix. In this case, a small aspect ratio is preferred because it provides a long liga-

ment of matrix material between fibers for the transverse stress to flow through, while a large aspect ratio is associ-

ated with a short ligament of matrix between fibers and more localized flow (Lissenden and Herakovich, 1996).

In figure 13, FEA (coarse mesh) and GMC predicted 1 and 10 kPa/sec SCIPs at 23 °C are compared in all four stress

planes for composites with a strong fiber-matrix bond. The SCIPs predicted by FEA and GMC are in good agree-

ment. This is in line with the excellent agreement between yield surfaces defined by local yielding (Mises stress)

that Pindera and Aboudi (1988) reported for the method of cells (square packing) and FEA. In figure 13 overall

SCIPs are determined based on overall inelastic strain rates and stresses, as might be done in an experiment. These

results are in contrast to the FEA/GMC comparisons made in Lissenden and Arnold (1997c), where GMC and FEA-

predicted flow surfaces were obtained at 650 °C using strain-controlled and stress-controlled loading, respectively.

While initial results indicated that flow surfaces in the axial-transverse stress plane were not very sensitive to

whether stress or strain control probing was used (Lissenden et al., 1998); in the transverse-transverse stress plane

the control mode is important. Thus, the larger flow surfaces obtained by GMC in strain-control (fig. 8 in Lissenden

and Arnold, 1997c) are easily explained. Inelastic deformation is strain rate dependent, thus more deformation oc-

curs tor a slower overall strain rate than a faster one. Consequently, in strain control the overall strain rate is fixed, it
is the stress rate that decreases as inelastic deformation occurs. However, in stress control the overall strain rate must

decrease as inelastic deformation occurs, resulting in more inelastic flow relative to strain control.

Figure 14 shows excellent agreement between GMC and FEA (coarse mesh) 10 kPa/sec SCIPs at 650 °C in all
four stress planes. The sharp points apparent on some of the surfaces are artifacts due to the large step in probe angle

(5 °) used to make the analysis less time consuming. These SCIPs are actually smooth curves. SCIPs from finer

GMC discretizations having 16 subcells (a cross shaped fiber) and 49 subcells (a roughly circular fiber) were also

examined in the axial-transverse stress plane. As was found for FEA (fig. B I ), the axial response was independent of

the discretization, but the transverse stress was 7 percent less for the 49 subcell model than for the 4 subeell model

shown in figure 14. This difference is almost imperceptible at the scale it is drawn. Local stress and strain fields,

which ultimately determine the strength or cyclic life of a material, are not reported here, but are the topic of a com-

panion paper (Lissenden et al., 1998).

Consider now, the case of a weak fiber-matrix bond using GMC, which is more realistic for the current SiC/Ti

system. In figure 15, I kPa/sec SCIPs at 23 °C tor a square array arc shown lbr weak and strong bonds. The primary

effect of a weak bond is to significantly reduce the tensile stress at which deviation from proportional response

begins. Since compressive interfacial tractions are not detrimental to the integrity of the interface, debonding does

not occur for transverse compressive loading (unless it is due to Poisson expansion, see Lissenden and Arnold

(1997a)). Additionally, axial loading is not observed to cause debonding.
The effect that microstructural architecture has on I kP_sec SCIPs in the axial-transverse and transverse-shear

stress planes tk)r weakly bonded SiC/Ti at 650 °C is shown in figure 16(a). Microstructural architecture has the most

NASA/TM-- 1998-208805 9



influencewhenacompressivetransverse stress is present. As was obse "ved for the stress-strain response (fig. 8), the

square array exhibits less inelastic flow than the hexagonal and square diagonal arrays.

Brockenbrough et al. (1991) and Arnold et al. (1996a) demonstrated that as the fiber volume fraction increases,

the effect of microstructural architecture increases for uniaxial ioadings. Figure 16(b) shows I kPa/sec SCIPs in the

axial-transverse stress plane at 650 °C for square, hexagonal, and square diagonal packings and a fiber volume frac-

tion of 0.50. The primary effect of increasing the fiber volume fraction is to enlarge the SCIP. Additionally, larger
differences in the SCIPs tbr the three microstructures are observed for Ihe higher fiber volume fraction, especially

where the transverse stress is compressive (and the interface has not de_onded).

VI. CLOSURE

Micromechanics has been used to generate overall flow/damage surfaces for unidirectional MMCs having dif-

ferent microstructures. The generalized method of cells results compared very well with those from the comput-

ationally more demanding finite element analysis approach, wherein many elements are required to obtain the same

level of accuracy. Except for the special case of uniaxial loading in the direction of the fibers, microstructure influ-

ences the shape and location of the macroscale flow/damage surface. The magnitude of the effect that microstructure

has on flow/damage surfaces depends strongly on fiber/matrix bond strength, fiber volume fraction, and the type of

loading, among other secondary factors. A weak fiber/matrix bond significantly influences the shape of the tlow/

damage surface. A dramatic flattening of the surface is observed for transverse tensile loading. Debonding also

occurs under shear loadings, but its effect is less drastic.

Flow/damage surfaces are important because multiaxial stress states are encountered in the analysis and design

of most structural components due to complex Ioadings and geometries, as well as due to stress concentrations. The

response of MMCs to multiaxial stress states can not be inferred from uniaxial test data. It is necessary to conduct

multiaxial tests to guide and later validate theoretical models. To implement the thermodynamically based frame-

work discussed in Section II for a macroscale continuum model, the functional form for the Gibbs and dissipation

potentials must be known. Neither of these potentials can be directly determined experimentally. However, one pos-

sible approach for continuum model development is to experimentally determine SCIPs in various stress planes and

use a micromechanics model to interpret the results. The functional forln of the Gibbs and dissipation potentials
could then be interred from the micromechanics model having an inela:aic power that correlates well with the

experimental results over a wide range of conditions. This work has shown that in addition to the dependence of

these potential functions on stress invariants, internal state invariants, and temperature, as for isotropic monolithic

materials, they may also depend on directionality, microstructure, and bond strength for MMCs. This adds yet an-

other level of complexity to the macro-based continuum approach for modeling multiaxial inelastic response of
MMCs.
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APPENDIX A

A MACROSCALE CONTINUUM EXAMPLE

Consider, a unidirectional MMC and smear the microstructure such that we have a homogeneous anisotropic

material. Thus, all variables in this appendix refer to composite quantities, there are no local (micro) variables. The

effect of hydrostatic stress on the flow of most metals is quite small and usually neglected, as is the case here, even

though composites can be dependent upon hydrostatic stresses (c.g., Aboudi, 1991 and Jansson, 1995). Assume that

the dissipation potential can be written in terms of two scalar functions. Y2 = _(F,H), where H is a function of the

deviatoric internal stress, ai), and the reinforcement direction, defined by D O, and

E'+,F= kT 1 r/- "
I (AI)

where

12 = I - 13 J2 = 1ZijZji

13=10 j3 =lyi.ZikZki
3 J "

l 0 = DiffZji

and k T is the transverse shear strength; also, q and to denote threshold stress ratios for shear and normal loading,

respectively. The constant c scales the effect ofJ 3 on inelastic flow and must be determined experimentally. This

form of F is for transversely isotropic materials and is due to Robinson and Duffy (I 990), except here J2 has been

replaced with Drucker's (1949) J2/J 3 form (c = -9/4). In this theory, the inelastic strain rate vector is normal to sur-

faces having constant F in stress space (see eq. (3)). Thus, normality only applies to flow surfaces proportional to

surfaces having F = constant. It can be shown that

• _ (A2)
a6e I = 2(F+ I) {t---F'

in the neighborhood of the virgin state, which are proportional to F = constant surfaces. On the other hand, SCISRs

turn out to be

4
+/0 1 +----_- +--

= ) L2./_,+4,.J_J_,(l+2,

-_ -2/3 -, )
+ 2(+-')(J:, + cJ4)[JSYij(lkiYjk+Dil_Yl<i)+_cJ3ZilZjl(Dl_iYjk+l)jl_Zl,.i)--_cJ2d3lo]

4m2_1 (J 3 + cJ_?'-2/3() C lOd5 -4cd2J3+2cJtl)iJYjkZl"i) +3" . -1DijZjl,.Dla+l)iil)jt,,Eki-'_'o

+ -1 l.ll<iY.,jl<+l-)jkgl<i)(DliYjl+DilYli)+713(Io-2 )

+/3 I 4 9 -3 .----s-+-- DqD# (A3)
q- 4092 - 1
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For an isotropic material (that is, rI = o3 = I ). SCISRs reduce to

__ _/2J'_ cJ_ 4 c nil2
k3(F+l)_- 7 (F+I)+ k6(F+i)2 1+'_-

(A4)

and if the J3 contribution to inelastic flow is negligible (that is, c = 0) we get

• 1.1
k _9F

(A5)

Thus, SCISRs are only proportional to surfaces having F = constant for the special case of isotropic J2 materials.

and therelore the normality criterion only applies to SCISRs for this special class of materials. Also, Lissenden and

/2_"e!.e_.
Arnold (1997a) extrapolated these results to rate-independent plasticity by considering tyije I and _3 _J sj ,where

the latter is the usual equivalent inelastic strain definition often used to define a yield surface, and found results
analogous to those for SCDRs and SCISRs. Hence, the Nigam et al. (1994a,b) results on boron/aluminum that the

plastic strain rate vector was not normal to the yield surface could be merely dependent on their definition of yield.
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APPENDIXB

A MESHREFINEMENTSTUDY

Hereacomparisonofthestress-strainresponsesforuniaxialandbiaxialIoadingsusingbothFEAandGMCis
conducted.Additionally,sinceweareinterestedininelasticpower,itsincreaseasafunctionoftimewillalsobe
plottedfortheseIoadings.InfigureBI thestress-strainandinelasticpower-timeresponsesareshownforaxial
(_11)'transverse ((Y22), and shear (c]2) loadings at 650 °C. A square array of fibers is discretized using the coarse
and fine FEA meshes (fig. 5) and the lour subcell GMC model (fig. 7). For axial loading the three predictions are

nearly identical for both stress-strain and inelastic power (fig. B I (a)), which is not surprising since the material

response is dominated by the fiber as evidenced by the high stresses and small inelastic power relative to the other
two types of loading. On the other hand, transverse and shear loadings are matrix dominated and differences be-

tween analysis techniques are anticipated.
The disparity in the coarse and fine mesh FEA-predicted transverse stress-strain and inelastic power-time

responses shown in figure B l(b) indicates that the coarse mesh is not adequate for predicting gross inelastic flow,
that is, the coarse mesh has not yet converged. Further refinement of the fine mesh indicated that it had converged

for the range of stresses obtained in the surface determinations presented in this paper, but for larger stresses an even

more refined mesh would be necessary. The GMC-predicted responses agree very well with the fine mesh FEA pre-

dictions for the range of stresses obtained in surface determinations. However, for larger stresses a more accurate

geometric representation of the fiber within the repeating unit cell would provide more accurate results, see figure I
of Arnold et al. 1996a.

The shear responses (fig. B 1(c)) from the two FEA meshes are identical, indicating that the coarse mesh has

converged for shear loading. The GMC predicted response exhibits more inelastic flow and is in reasonably good

agreement with the FEA results. The exponential form of the inelastic power accumulation with time (fig. B I (c)) is
a result of the constant stress rate used, which causes the inelastic strain rate to approach infinity as the slope of the

stress-strain curve approaches zero.
Stress-strain and inelastic power-time responses calculated utilizing FEA and GMC are shown in figure B2 for

proportional biaxial loading of a square array of fibers at 650 °C. The axial-transverse (orI I = (Y22) response shown

in figure B2(a) indicates that each micromechanics approach is equally good for predicting axial response, but that

differences are present in the predicted transverse response, which lead to differences in the inelastic power. As for

uniaxial transverse loading, the coarse FEA mesh is inadequate for predicting gross inelastic flow while GMC pro-

vides a very reasonable approximation of the inelastic flow. Each model is equally good for predicting the trans-

verse-transverse (_22 = (Y33) response, as shown in figure B2(b) and reasonable agreement is also observed for the

axial-shear (_11 = c_12) response shown in figure B2(c).
Note that the finely meshed FEA takes a relatively long time to execute compared to that of the coarse FEA

mesh (a clock-time ratio of approximately 4: I ), and even more so relative to GMC. This lengthy execution time is

greatly exacerbated when performing flow surface determinations as at least 72 directions for one surface determina-
tion are required. Fortunately, the coarse FEA mesh is reasonably accurate for small values of inelastic power,

approximately 10 kPa/sec and below. Thus, it appears acceptable to use the coarse mesh tot surface determinations

using transverse stresses provided the target value is small. Additionally, GMC, which is numerically more efficient

than either FEA model, agrees well with the fine meshed FEA results.
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Figure 1.--Periodic microstrctures; (a) rectangular, (b) hexagonal, and
(c) square diagonal array.
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Figure 2.--Predicted constituent response for SiC
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Figure 5.---Coarse and fine mesh FEA discretizations of the rectanglar, hexagonal,
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Figure 13.--Comparison of I and 10 kPa/sec SCIPs predicted by GMC and FEA (coarse mesh) at
23 °C for a square array.
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